Discuz! Board

 找回密碼
 立即註冊
搜索
熱搜: 活動 交友 discuz
查看: 1|回復: 0

文字都可以为您的网站创造奇社交媒体市

[複製鏈接]

2

主題

2

帖子

8

積分

新手上路

Rank: 1

積分
8
發表於 2024-2-19 15:40:00 | 顯示全部樓層 |閱讀模式
然而这种理解并不总是一种保证。人工智能可以成为提高组织效率同时最大限度地减少人为偏见的强大工具然而它的好坏取决于编写它的人了解每个工具的优点和缺点将帮助您针对组织需求做出更明智的决策。这对于解释这些模型的人意味着什么模型可解释性描述了某人可以合理理解模型结果的程度以及更一般地说模型如何得出这些结果。但问题是一些最准确且计算成本最高的模型并不容易解释。使用这些模型的工具也被称为黑盒模型确实往往比更简单的模型表现得更好但代价是缺乏更好地理解它们的清晰机制。在某些类型的问题例如图像分类中理解模型的内部机制可能并不是什么大问题我们最终可以清楚地看到狗的图像是否被正确分类。

但当我们处理主观的人类数据时事情很快就会变得复杂。数据例如某人是否适合某工作。已经有很多案例表明善意的人工智能工具最终引入的偏见比其减少的偏见还要多从而造成了巨大的人力成本。为了在人力资源领域解决这一问题 土耳其 WhatsApp 号码数据 从年开始在纽约州和加利福尼亚州运营的为招聘决策提供人工智能服务的公司必须接受偏见审计。将制定什么样的标准还有待观察但可以肯定的是可解释性将是一个关键组成部分。可解释的模型如何减少招聘中的偏见可解释的模型可以减少招聘中的偏见因为它具有出色的能力来传达可能存在偏见的变量是否与分析相关这可能会促使部署该模型的公司进一步检查该变量是否应该保留在模型中或者是否应该预先考虑。



处理或清洁。有些变量可能是显而易见的我们不应在招聘决策中考虑种族或民族因素。但其他变量则更加棘手。例如邮政编码可能与该国部分地区的种族高度相关如果模型没有删除邮政编码它仍然隐式地将潜在的偏见信息包含在模型中。公平地说黑盒模型并非无法解释。但它们确实需要更多的工作和专业知识即便如此全球和本地化的解释仍然存在差异这可能是一个太大的话题无法在这里讨论。在一些流行的模型中例如随机森林您甚至可以轻松地理解某些变量的信息增益。

回復

使用道具 舉報

您需要登錄後才可以回帖 登錄 | 立即註冊

本版積分規則

Archiver|手機版|自動贊助|KDS黑勢力綜合論壇

GMT+8, 2024-12-4 15:59 , Processed in 0.063904 second(s), 18 queries .

抗攻擊 by GameHost X3.4

© 2001-2017 Comsenz Inc.

快速回復 返回頂部 返回列表
一粒米 | 中興米 | 論壇美工 | 設計 抗ddos | 天堂私服 | ddos | ddos | 防ddos | 防禦ddos | 防ddos主機 | 天堂美工 | 設計 防ddos主機 | 抗ddos主機 | 抗ddos | 抗ddos主機 | 抗攻擊論壇 | 天堂自動贊助 | 免費論壇 | 天堂私服 | 天堂123 | 台南清潔 | 天堂 | 天堂私服 | 免費論壇申請 | 抗ddos | 虛擬主機 | 實體主機 | vps | 網域註冊 | 抗攻擊遊戲主機 | ddos |